Documentação Este exemplo mostra o fluxo de trabalho recomendado para gerar código C a partir de uma função MATLAB usando o comando codegen. Estas são as etapas: 1. Adicionar a diretiva codegen para a função MATLAB para indicar que ele é destinado para geração de código. Esta diretiva também permite que o analisador de código MATLAB para identificar avisos e erros específicos para MATLAB para geração de código. 2. Gerar uma função MEX para verificar se o código MATLAB é adequado para geração de código. Se ocorrerem erros, você deve corrigi-los antes de gerar o código C. 3. Testar a função MEX no MATLAB para garantir que é funcionalmente equivalente ao código MATLAB original e que não ocorrem erros de tempo de execução. 4. Gere código C. 5. Inspecione o código C. Pré-requisitos Não existem pré-requisitos para este exemplo. Criar uma nova pasta e copiar arquivos relevantes O código a seguir criará uma pasta na sua pasta de trabalho atual (pwd). A nova pasta conterá somente os arquivos que são relevantes para este exemplo. Se você não quiser afetar a pasta atual (ou se você não pode gerar arquivos nesta pasta), você deve alterar sua pasta de trabalho. Comando de Execução: Criar uma Nova Pasta e Copiar Arquivos Relevantes Sobre a função de averagingfilter A função averagingfilter. m atua como um filtro de média no sinal de entrada que toma um vetor de entrada de valores e calcula uma média para cada valor no vetor. O vetor de saída tem o mesmo tamanho e forma que o vetor de entrada. Select Your CountryDocumentation tsmovavg saída tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto da série temporal financeira, tsobj. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para a série de tempo financeiro objeto, tsobj. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Percentual Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1). Saída tsmovavg (vetor, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. (2 / (intervalo de tempo 1)). A saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para a série de tempo financeiro objeto, tsobj. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. A saída tsmovavg (tsobj, w, weights) retorna a média móvel ponderada para o objeto da série temporal financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série de tempo financeiro, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. A saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensão para operar ao longo de inteiro positivo com valor 1 ou 2 Dimensão para operar ao longo, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional, e se não for incluído como uma entrada, o padrão Valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada a linha, em que cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como sendo um vetor de coluna ou uma matriz orientada a coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que timeperiod é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Porcentagem exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo inteiro não negativo Selecionar sua resposta CountryFrequency do filtro Average Running A resposta de freqüência de um sistema LTI é o DTFT da resposta ao impulso, De uma média móvel L-média é Como o filtro de média móvel é FIR, a resposta de freqüência reduz à soma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega , Abs (H4) abs (H8) abs (H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, BerkeleyCriado na quarta-feira, 08 de Outubro de 2008 20:04 Última atualização em Quinta, 2017 01:29 Escrito por Batuhan Osmanoglu Hits: 38910 Moving Average Em Matlab Muitas vezes eu me encontro na necessidade de calcular a média dos dados que tenho para reduzir o ruído um pouco. Eu escrevi funções de casal para fazer exatamente o que eu quero, mas matlabs construído em função de filtro funciona muito bem também. Aqui Ill escrever sobre 1D e 2D média dos dados. 1D filtro pode ser realizado usando a função de filtro. A função de filtro requer pelo menos três parâmetros de entrada: o coeficiente de numerador para o filtro (b), o coeficiente do denominador para o filtro (a) e os dados (X), é claro. Um filtro de média em execução pode ser definido simplesmente por: Para dados 2D, podemos usar a função Matlabs filter2. Para obter mais informações sobre como o filtro funciona, você pode digitar: Aqui está uma implementação rápida e suja de um filtro de média móvel 16 por 16. Primeiro precisamos definir o filtro. Uma vez que tudo o que queremos é a contribuição igual de todos os vizinhos, podemos apenas usar a função uns. Nós dividimos tudo com 256 (1616) desde que nós não queremos mudar o nível geral (amplitude) do sinal. Para aplicar o filtro podemos simplesmente dizer o seguinte Abaixo estão os resultados para a fase de um interferograma SAR. Neste caso, Range está no eixo Y e Azimuth é mapeado no eixo X. O filtro tinha 4 pixels de largura em Alcance e 16 pixels de largura em Azimute. Login SearchUsing MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e anexar a média móvel para a matriz que eu estou tentando calcular a média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Eu tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado matriz a como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há valor nas 2 linhas inferiores para a 4ª coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 1 Resposta Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Em vez disso, você é forçado a usar um par de linhas:
Análise do Forex Dólar abre em uma nota fraca O dólar de EU abriu com aberturas negativas de encontro a suas contrapartes principais em segunda-feira e continuou a negociar mesmo mais baixo durante a manhã asiática, invertendo alguns de seus ganhos notáveis das semanas passadas. Dada a ausência de qualquer notícia fundamental por trás do movimento, acreditamos que isso pode ser o resultado de investidores bloqueio-nos lucros de suas apostas anteriores, em face de uma semana cheia de eventos de risco potencial. Mesmo que esta correção pode continuar por um tempo, a tendência ainda parece positiva. O dólar negociou mais alto ou inalterado de encontro a seus pares G10 durante a manhã européia segunda-feira. Os maiores perdedores foram GBP, JPY e NOK nessa ordem, enquanto o greenback permaneceu praticamente inalterado apenas contra SEK, CAD e AUD. IronFX Portfolio Management - 16 de outubro Visão Geral do Desempenho IronFX Portfolio Managements Hybrid e as novas estratégias Alpha Growth ...
Comments
Post a Comment